Meteor AI
Developer Tools

Gemini CLI Integration Guide

Gemini CLI integration guide - Call AI models through Meteor API platform

This guide will show you how to install and configure Gemini CLI to call AI models through the Meteor API platform. Gemini CLI is a powerful AI programming assistant that supports multiple programming languages and development environments.

Install Gemini CLI

Install Gemini CLI globally using npm:

npm install -g @google/gemini-cli

Configure Gemini CLI

Step 1: Create Environment Configuration File

Create a .env file in the following location based on your operating system:

Windows

C:\Users\<YourUsername>\.gemini\.env

macOS / Linux

~/.gemini/.env

If the .gemini directory does not exist, please create it manually first. Then add the following content to the .env file:

GOOGLE_GEMINI_BASE_URL=https://routin.ai/

Step 2: Configure Model Settings

Create a settings.json file in the .gemini directory (same directory as .env file) and add the following configuration:

{
  "ide": {
    "hasSeenNudge": true
  },
  "security": {
    "auth": {
      "selectedType": "gemini-api-key"
    }
  },
  "base": {
    "modelConfig": {
      "generateContentConfig": {
        "temperature": 0,
        "topP": 1
      }
    }
  },
  "chat-base": {
    "extends": "base",
    "modelConfig": {
      "generateContentConfig": {
        "thinkingConfig": {
          "includeThoughts": true
        },
        "temperature": 1,
        "topP": 0.95,
        "topK": 64
      }
    }
  },
  "chat-base-2.5": {
    "extends": "chat-base",
    "modelConfig": {
      "generateContentConfig": {
        "thinkingConfig": {
          "thinkingBudget": 8192
        }
      }
    }
  },
  "chat-base-3": {
    "extends": "chat-base",
    "modelConfig": {
      "generateContentConfig": {
        "thinkingConfig": {
          "thinkingLevel": "HIGH"
        }
      }
    }
  },
  "gemini-3-pro-preview": {
    "extends": "chat-base-3",
    "modelConfig": {
      "model": "gemini-3-pro-preview"
    }
  },
  "gemini-2.5-pro": {
    "extends": "chat-base-2.5",
    "modelConfig": {
      "model": "gemini-2.5-pro"
    }
  },
  "gemini-2.5-flash": {
    "extends": "chat-base-2.5",
    "modelConfig": {
      "model": "gemini-2.5-flash"
    }
  },
  "gemini-2.5-flash-lite": {
    "extends": "chat-base-2.5",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite"
    }
  },
  "gemini-2.5-flash-base": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash"
    }
  },
  "classifier": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite",
      "generateContentConfig": {
        "maxOutputTokens": 1024,
        "thinkingConfig": {
          "thinkingBudget": 512
        }
      }
    }
  },
  "prompt-completion": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite",
      "generateContentConfig": {
        "temperature": 0.3,
        "maxOutputTokens": 16000,
        "thinkingConfig": {
          "thinkingBudget": 0
        }
      }
    }
  },
  "edit-corrector": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite",
      "generateContentConfig": {
        "thinkingConfig": {
          "thinkingBudget": 0
        }
      }
    }
  },
  "summarizer-default": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite",
      "generateContentConfig": {
        "maxOutputTokens": 2000
      }
    }
  },
  "summarizer-shell": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-flash-lite",
      "generateContentConfig": {
        "maxOutputTokens": 2000
      }
    }
  },
  "web-search": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {
      "generateContentConfig": {
        "tools": [
          {
            "googleSearch": {}
          }
        ]
      }
    }
  },
  "web-fetch": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {
      "generateContentConfig": {
        "tools": [
          {
            "urlContext": {}
          }
        ]
      }
    }
  },
  "web-fetch-fallback": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {}
  },
  "loop-detection": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {}
  },
  "loop-detection-double-check": {
    "extends": "base",
    "modelConfig": {
      "model": "gemini-2.5-pro"
    }
  },
  "llm-edit-fixer": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {}
  },
  "next-speaker-checker": {
    "extends": "gemini-2.5-flash-base",
    "modelConfig": {}
  },
  "chat-compression-3-pro": {
    "modelConfig": {
      "model": "gemini-3-pro-preview"
    }
  },
  "chat-compression-2.5-pro": {
    "modelConfig": {
      "model": "gemini-2.5-pro"
    }
  },
  "chat-compression-2.5-flash": {
    "modelConfig": {
      "model": "gemini-2.5-flash"
    }
  },
  "chat-compression-2.5-flash-lite": {
    "modelConfig": {
      "model": "gemini-2.5-flash-lite"
    }
  },
  "chat-compression-default": {
    "modelConfig": {
      "model": "gemini-2.5-pro"
    }
  }
}

Step 3: Launch and Configure API Key

Run the following command in your terminal:

gemini

On first run, Gemini CLI will guide you through the configuration:

  1. Select authentication method: Choose API Key authentication
  2. Enter API Key: Input your API Key obtained from the Meteor platform
  3. Press Enter to confirm

Once configured, you can start using Gemini CLI to interact with the Meteor API platform!


Usage Examples

After configuration, you can use Gemini CLI directly in your terminal:

# Start interactive chat
gemini

# Ask a question directly
gemini "How to read a JSON file in Python?"